Matemática en Occidente

Durante la Edad Media las aplicaciones del álgebra al comercio, y el dominio de los números, lleva al uso corriente de los números irracionales, una costumbre que es luego transmitida a Europa. También se aceptan las soluciones negativas a ciertos problemas, cantidades imaginarias y ecuaciones de grado tres.

Matemática medieval en Europa

El desarrollo de las matemáticas durante la edad media es frecuentemente motivada por la creencia en un orden natural, Boecio las sitúa dentro del currículo, en el siglo VI, al acuñar el término Quadrivium para el estudio metódico de la aritmética, la geometría, la astronomía y la música, en su De institutione arithmetica, una traducción de Nicómaco, entre otros trabajos que constituyeron la base de la matemática hasta que se recuperaron los trabajos matemáticos griegos y árabes.

Durante el siglo XII, particularmente en Italia y en España, se traducen textos árabes y se redescubren los griegos.​ Toledo se vuelve un centro cultural y de traducciones, los escolares europeos viajan a España y a Sicilia en busca de literatura científica árabe incluyendo el Compendio de cálculo por compleción y comparación de al-Khwārizmī, y la versión completa de los Elementos de Euclides, traducida a varios idiomas por Adelardo de Bath, Herman de Carinthia, y Gerardo de Cremona.

El crecimiento económico y comercial que conoce Europa, con la abertura de nuevas rutas hacia el oriente musulmán, permite también a muchos mercaderes familiarizarse con las técnicas transmitidas por los árabes. Las nuevas fuentes dan un impulso a las matemáticas. Fibonacci escribe su Liber Abaci en 1202, reeditado en 1254, produce el primer avance significativo en matemática en Europa con la introducción del sistema de numeración indio: los números arábigos (sistema de notación decimal, posicional y con uso común del cero). En teoría enseñada en el Quadrivium, pero también destinada a la práctica comercial. Esta enseñanza se transmite en las botteghe d’abbaco o escuelas de ábacos, en donde los maestri enseñaban la aritmética, la geometría y los métodos calculatorios a los futuros comerciantes, a través de problemas recreativos, conocidos gracias a tratados de álgebra que estos maestros han dejado. Aunque el álgebra y la contabilidad corren por senderos separados, para cálculos complejos que involucran interés compuesto, un buen dominio de la Aritmética es altamente valorado.

Renacimiento europeo

Hay un fuerte desarrollo en el área de las matemáticas en el siglo XIV, como la dinámica del movimiento. Thomas Bradwardine propone que la velocidad se incrementa en proporción aritmética como la razón de la fuerza a la resistencia se incrementa en proporción geométrica, y muestra sus resultados con una serie de ejemplos específicos, pues el logaritmo aún no había sido concebido,​ su análisis es un ejemplo de cómo se transfirió la técnica matemática utilizada por al-Kindi y Arnau de Vilanova.

Los matemáticos de esta época (tales como los calculatores de Merton College, de Oxford), al no poseer los conceptos del cálculo diferencial o de límite matemático, desarrollan ideas alternativas como por ejemplo: medir la velocidad instantánea como la “trayectoria que habría seguido [un cuerpo] si… hubiese sido movido uniformemente con un mismo grado de velocidad con el que es movido en ese instante dado“,​ o bien: determinar la distancia cubierta por un cuerpo bajo movimiento uniforme acelerado (hoy en día resuelto con métodos de integración). Este grupo, compuesto por Thomas Bradwardine, William Heytesbury, Richard Swineshead y John Dumbleton, tiene como principal éxito la elaboración del teorema de la velocidad media que más tarde, usando un lenguaje cinemático y simplificado, compondría la base de la ley de la caída de los cuerpos, de Galileo.

Nicolás Oresme en la Universidad de París y el italiano Giovanni di Casali, proveyeron -independientemente- una demostración gráfica de esta relación. En un comentario posterior a los Elementos, Oresme realiza un análisis más detallado en el cual prueba que todo cuerpo adquiere, por cada incremento sucesivo de tiempo, un incremento de una cualidad que crece como los números impares. Utilizando el resultado de Euclides que la suma de los números impares son los cuadrados, deduce que la cualidad total adquirida por el cuerpo, se incrementará conforme el cuadrado del tiempo.

Luca Pacioli escribe Summa de Arithmetica, Geometría, Proportioni et Proportionalità (Venecia, 1494), en donde se incluyen tratados de contabilidad y escritura, si bien estaba dirigido a mercaderes o aprendices de mercaderes, también contenía acertijos y rompecabezas matemáticos. En Summa Arithmetica, Pacioli introduce símbolos por primera vez en un libro impreso, lo que luego se convirtió en una notación convencional. También es el primer libro conocido de álgebra (mucho del contenido es plagiado de Piero della Francesca).

Durante la primera mitad del siglo XVI, Scipione del Ferro y Niccolò Fontana Tartaglia descubren las soluciones complejas de las ecuaciones cúbicas, trabajando en la resolución de ecuaciones. Retomado por Tartaglia y publicado por Cardan, encuentran una primera formulación junto con Bombelli. Gerolamo Cardano publicará el Ars magna junto con un trabajo de su alumno Ferrari, quien resuelve las ecuaciones de cuarto grado. En 1572 Rafael Bombelli publica su L’Algebra, en el que muestra cómo utilizar las cantidades imaginarias que podrían aparecer en la fórmula de Cardano para las ecuaciones de grado tres.

Hasta fines del siglo XVI, la resolución de problemas matemáticos continúa siendo una cuestión retórica. El cálculo simbólico aparecerá en 1591, con la publicación del Isagoge Artem Analycitem de François Viète y la introducción de notaciones específicas para las constantes y las variables (trabajo popularizado y mejorado por Harriot, Fermat y Descartes, cambiará por completo el trabajo algebraico desarrollado en Europa). La principal aportación del Renacimiento a la matemática fue la sustitución del álgebra tensorial, heredado de la Antigua Grecia, por la más sencilla álgebra de los polinomios.​ En este periodo el álgebra, que desde los Elementos de Euclides se había estudiado desde un punto de vista geométrico, se independiza de la geometría y se convierte en una rama autónoma dentro de la matemática.63

La revolución científica de los siglos XVII y XVIII

Las matemáticas se inclinan sobre aspectos físicos y técnicos. Isaac Newton y Gottfried Leibniz crean el cálculo infinitesimal, con lo que se inaugura la era del análisis matemático, la derivada, la integración y las ecuaciones diferenciales. Esto fue posible gracias al concepto de límite, considerado la idea más importante de la matemática.​ No obstante, la formulación precisa del concepto de límite no se produjo hasta el siglo XIX con Cauchy.

El universo matemático de comienzos del siglo XVIII está dominado por la figura de Leonhard Euler y por sus aportes tanto sobre funciones matemáticas como teoría de números, mientras que Joseph-Louis Lagrange alumbra la segunda mitad del siglo.

El siglo precedente había visto la puesta en escena del cálculo infinitesimal, lo que abría la vía al desarrollo de una nueva disciplina matemática: el análisis algebraico, en el que, a las operaciones clásicas del álgebra, se añaden la diferenciación y la integración. El cálculo infinitesimal se aplica tanto en la física (mecánica, mecánica celeste, óptica, cuerdas vibrantes) como en geometría (estudio de curvas y superficies). Leonhard Euler, en Calculi différentialis (1755) y en Institutiones calculi integralis (1770), intenta establecer las reglas de utilización de los infinitos pequeños y desarrolla métodos de integración y de resolución de ecuaciones diferenciales. También se destacan los matemáticos Jean le Rond d’Alembert y Joseph-Louis Lagrange. En 1797, Sylvestre François Lacroix publica Traité du calcul différentiel et intégral que es una síntesis de los trabajos del Análisis del siglo XVIII. La familia Bernoulli contribuye al desarrollo de la resolución de las ecuaciones diferenciales.

La función matemática se vuelve un objeto de estudio a parte entera. Matemáticos de la talla de Brook Taylor, James Stirling, Euler, Maclaurin o Lagrange, la utilizan en problemas de optimización, se la desarrolla en series enteras o asintóticas pero sin preocuparse de su convergencia. Leonhard Euler elabora una clasificación de funciones. Se intenta aplicarla a los reales negativos o complejos.

En esta época se produce el fenómeno contrario al observado en el siglo XVI. Álgebra y geometría vuelven a unirse bajo un mismo método, pero ahora es el lenguaje algebraico el que se aplica al estudio de los problemas geométricos.​ El teorema fundamental del álgebra (existencia de raíces eventualmente complejas a todo polinomio) que tenía forma de conjetura desde hacia dos siglos, es revalorizado en la utilización de la descomposición en elementos simples, necesario para el cálculo integral. Sucesivamente, Euler (1749) y Lagrange (1771), intentan demostraciones algebraicas pero se enfrentan a la parte trascendente del problema (todo polinomio de grado impar sobre R posee una raíz real), que necesitará de la utilización de un teorema de valores intermedios.

La demostración de D’Alembert publicada en 1746 en los anales de la academia de Berlín, es la más completa pero contiene aún algunas lagunas y pasajes obscuros. Gauss, en 1799, que critica a D’Alembert sobre estos puntos, no está exento de los mismos reproches. Hay que hacer intervenir en un momento un resultado fuerte del Análisis que el siglo aún no conoce. Además, este obstáculo se sitúa en la cuestión de los puntos de bifurcación: es una cuestión ya debatida en la polémica sobre los logaritmos y los números negativos a la que pondrá fin Euler. La segunda y tercera demostración de Gauss no adolecen de estas carencias, pero ya no se inscriben dentro del mismo siglo.

En aritmética, Euler demuestra el pequeño teorema de Fermat y da una versión extendida a los números compuestos (1736-1760).