Teoría de la medida

La teoría de la medida es una rama del análisis y de la geometría que investiga las medidas, las funciones medibles y la integración. Es de importancia central en geometría, probabilidad y en estadística.

En matemáticas, una medida de un conjunto es una forma sistemática y rigurosa de asignar un número a cada subconjunto apropiado de dicho conjunto. Intuitivamente, dicho número puede ser interpretado como una cierta medida del tamaño de dicho subconjunto. En este sentido, la medida es una generalización de los conceptos de longitud,área, y volumen. Dicha generalización se extiende tanto a mayores dimensiones (en el sentido de hipervolúmenes) como a conceptos más abstractos, puesto que el conjunto sobre el que se aplica una medida no tiene por qué ser un subconjunto de un espacio geométrico. Un ejemplo sería la medida de Lebesgue: cuando se aplica en un espacio Euclídeo.

Técnicamente, una medida es una función que asigna un número real no-negativo (ó +∞) a ciertos subconjuntos de un conjunto X. La medida cumple una serie de propiedades: debe ser, por ejemplo, contable aditiva, en el sentido de que la medida de un subconjunto ‘grande’ puede siempre ser descompuesta en un número finito (o contablemente infinito) de subconjuntos disjuntos más pequeños, de tal modo que la medida sea la suma de las medidas de dichos subconjuntos más pequeños.

En general, si uno pretende asociar un tamaño consistente a cada subconjunto de un conjunto dado y al mismo tiempo satisfacer el resto de axiomas de una medida, las únicas medidas que uno suele poder definir son ejemplos triviales como la medida de conteo. Este problema fue resuelto definiendo la medida como aplicable a unas familias reducidas de subconjuntos, usualmente llamados los conjuntos medibles. Las condiciones de consistencia que deben cumplir los miembros de estas familias quedan encapsuladas en el concepto auxiliar de σ-álgebra. Esto significa que los subconjuntos no medibles, esto es, los subconjuntos para los que uno no puede definir una medida (sea de Lebesgue u otra) son muchos. Generalmente, esta limitación puede interpretarse como una consecuencia no-trivial del axioma de elección.

Por ejemplo, en base a dicho axioma, la paradoja de Banach-Tarski señala que la bola unidad en tres dimensiones (esto es, una esfera de radio unidad) puede ser descompuesta en un número finito de piezas (no menos de cinco) tales que pueden ser recompuestos para formar dos bolas unitarias. Esto es, uno puede formar dos esferas de radio unidad usando tan sólo cinco piezas de una sola esfera de radio unidad. Si este es el caso, parece absurdo pretender definir la medida de una bola unitaria, puesto que por subaditividad contable uno puede asignar al menos dos valores distintos a la misma. La teoría de la medida demarca las condiciones que los conjuntos tienen que cumplir para ser medibles.