Número primo

En matemáticas, un número primo es un número natural mayor que 1 que tiene únicamente dos divisores distintos: él mismo y el 1.​ Por el contrario, los números compuestos son los números naturales que tienen algún divisor natural aparte de sí mismos y del 1 y por lo tanto, pueden factorizarse. El número 1, por convenio, no se considera ni primo ni compuesto.

Los 168 números primos menores de 1000 son: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997 (sucesión A000040 en OEIS).

La propiedad de ser primo se denomina primalidad. A veces se habla de número primo impar para referirse a cualquier número primo mayor que 2, ya que este es el único número primo par.

En la teoría algebraica de números, a los números primos se les conoce como números racionales primos para distinguirlos de los números gaussianos primos.

El estudio de los números primos es una parte importante de la teoría de números, rama de las matemáticas que trata las propiedades, básicamente aritméticas, de los números enteros. Los números primos están presentes en algunas conjeturas centenarias tales como la hipótesis de Riemann y la conjetura de Goldbach, resuelta por el peruano Harald Helfgott en su forma débil.

La distribución de los números primos es un tema recurrente de investigación en la teoría de números: si se consideran números individuales, los primos parecen estar distribuidos aleatoriamente, pero la distribución global de los números primos sigue leyes bien definidas.